<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>PACKAGE TYPE</th>
<th>POTENTIAL ISSUE</th>
</tr>
</thead>
</table>
| Acceptance of Package types for transport | **Limited quantities (LQ)** – shrink wrapped trays or boxes < 30kg each, e.g. aerosols, paint tins, mixed goods, typically PGII/III container size <5L, Retail Distribution Loads (RDL) | • Non-approved inner packaging, e.g. jar, sample vial or test-tube, has potential to break and leak into adjacent packaging
• Flimsy shrink-wrapping and unrestrained items on trays → physically impacting other goods and causing unintended reactions
• LQ consigned in large packages exceeding the 5L limit posing greater fire hazards on mixed loads
• Dangerously incompatible goods in box, e.g. oxidisers with solvents → heating/melting containers and rapid fire incident
• Co-transporting incompatible goods with RDL at placard load levels → increasing frequency of reaction
• Application of LQ placarding to loads in excess of package size limits |
| | **Pallets of packages** – steel drums, textile bags, fibreboard boxes, jerricans, plywood boxes, articles (batteries, aerosols, air bags etc.) | • Non-approved packaging exposed to stress failure with normal transport vibration
• Physical impacts of palletising – squash, deform, pressurise, rupture, leak
• Restraint mechanism affects package integrity, e.g. steel bands tightened on plastic drums can rupture
• Overpacking technique obscures incompatible goods accommodated by Mixed DG bumblebee |
| | **Segregation Devices & Packages, e.g. Type I, Approved type II, Large Packagings, Segregation Packaging** | • Non-approved segregation devices allow goods to escape confinement
• Poor stowage and dunnage configuration allows package movement → corrosive goods adversely affecting structure
• Dangerously incompatible goods co-located inside segregation devices
• Mechanical handling of custom-fabricated Type I segregation devices (450 kg limit) compromises integrity
• Approved Type II segregation devices not maintained – sides perforated by forklift tynes, panels loosened, closures bent
• Large Packaging loaded in excess of rated load capacity → failure and leakage of goods
• Segregation Packaging not secured, i.e. removable head drums not tightened properly meaning goods not contained |
| | **Cylinders <500 L individual e.g. 22L exchange LPG, G-size welding gases** | • Non-approved cylinders/ exported cylinders w/o burst discs/ PRV
• Expired cylinders, i.e. service interval exceeds AS2030/ AS3788 period → unknown status of valves/ regulators/ fixtures
• Cylinders over-filled by local operators exceeding mass-filling ratios → over-pressurised and venting
• Single cylinders shrink-wrapped onto pallets not adequately restrained
• Stillage design faults → forking grooves absent; large gaps, low rails or inadequate internal restraint allow cylinder movement
• Manifold packs – only Div. 2.2 exempt from placardable unit rules
• Projectiles as a result of valve or burst-disc malfunction
• Temperature effects on cylinders → toxic, flammable or asphyxiating emissions released into cargo transport unit |
Pressure Vessels > 500 L individual e.g. chlorine drums, ammonia tanks, insulated helium tanks
- Non-approved cylinders/ exported cylinders w/o burst discs/ PRV
- Expired cylinders, i.e. service interval exceeds AS2030/ AS3788 period → unknown status of valves/ regulators/ fixtures
- Cylinders over-filled by local operators exceeding mass-filling ratios → agitation/ increased temp. exceeds relief valve pressure
- Protection of valves absent → presents handling risk of shearing valve → liquid/ vapour release
- Fusible plugs for toxic goods → visual inspection showing extruded or deformed plug → risk of overpressure ejection plug
- Refrigeration jackets – insulated jacket with perforations/ vacuum loss/ insulator compression → heat ingress & overpressure

Intermediate Bulk Containers (IBC) e.g. Flexible BulkaBag for AN (FIBC), Plastic Composite IBCs for corrosives, Stainless steel IBCs for solvents.
- FIBCs are perforated on pallets or floor of cargo transport unit → solid spillage of toxic, oxidising or flammable solids
- Bottom outlet valves on liquid goods are prised open → spillage
- Filling lids are cross-threaded → liquid splash or vapour emission
- Composite IBCs mechanically damaged → perforated by forklift tynes or squashed by pallets resting directly on plastic inner
- Outer cage of composite IBCs are damaged by mechanical handling → exposing plastic inners to wearing on trailer metal floor
- Maximum Permitted Gross Mass exceeded during filling → IBC failure
- Maximum permitted stacking load is exceeded → IBC failure
- Plastic IBCs used past 5yr expiry → UV embrittlement and material failure
- Corrosive product incompatible with internal surface/ surface coating → deform or dissolve IBC shell
- High vapour pressure liquids in excess of IBC rating → over-pressurised IBC and release of contents through seams or outlets
- Imported IBCs with GHS markings at exclusion of DG Labelling & Marking
- Imported IBCs have no EIPs for use in Australian transport system

Portable Tanks (1- 25 kL) (PT) e.g. 4kL off-shore solvent tanks, 20 kL ISOTAINERS
- Non-approved PT/ exported PT w/o burst discs/ PRV
- Corrosive product incompatible with internal surface/ surface coating → deform or dissolve tank shell
- Frame and tank not subjected to Dynamic Longitudinal Impact Test means resistance to braking/ transport collision unknown
- PT being used beyond certified inspection service period → valve or fixture failure
- PT over-filled by local operators exceeding mass-filling ratios → over-pressurised and venting
- Contaminated PT e.g. residue from last chemical fill reacting with contents → heat/ gas evolution/ precipitation
- Maximum permitted stacking load is exceeded → PT failure
- Maximum Permitted Gross Mass exceeded during filling → PT failure
- Inadequate twist-lock configuration on PT → alternate anchoring method required

Multiple Element Gas Containers (MEGC) used for liquefied or compressed gas transport, e.g. hydrogen, nitrogen, liquefied ethane
- Non-approved cylinders/ exported cylinders w/o burst discs/ PRV
- Frame and tank not subjected to Dynamic Longitudinal Impact Test means resistance to braking/ transport collision unknown
- Burst disc outlet angled to deliver exhausted gas onto tubes above → flame impingement increases BLEVE potential for Div. 2.1
- MEGC over-filled by local operators exceeding mass-filling ratios → over-pressurised and venting
- Maximum permitted stacking load is exceeded → MEGC failure
- Inadequate twist-lock configuration on MEGC → alternate anchoring method required
<table>
<thead>
<tr>
<th>Freight Containers (FC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. multi-loads of packaged goods on pallets, IBCs or 1kL Portable Tanks</td>
<td></td>
</tr>
<tr>
<td>• Non-approved FC i.e. not accepted by Convention for Safe Containers</td>
<td></td>
</tr>
<tr>
<td>• FC not subjected to Dynamic Longitudinal Impact Test means resistance to braking/transport collision unknown</td>
<td></td>
</tr>
<tr>
<td>• Fumigated units not placarded for asphyxiating danger adversely affect loaders and personnel de-stuffing FC</td>
<td></td>
</tr>
<tr>
<td>• Exposure of Div. 4.2 or Div. 4.3 IBCs to moisture/air leads to flammable or toxic atmosphere developing in FC</td>
<td></td>
</tr>
<tr>
<td>• Leakage of asphyxiating gases of Div. 2.2 or toxic gases of Div. 2.3 cylinders → elevated unloading hazard for personnel</td>
<td></td>
</tr>
<tr>
<td>• Poor stowage and dunnage configuration in FC allows package movement → perforated goods potentially affecting FC structure</td>
<td></td>
</tr>
<tr>
<td>• Goods stacked against door or loosely in second layer creates falling and pinch hazard for unloader</td>
<td></td>
</tr>
<tr>
<td>• Exceed maximum stacking weight → FC frame or panel failure</td>
<td></td>
</tr>
<tr>
<td>• Inadequate twist-lock configuration on FC → alternate anchoring method required</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bulk Containers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(BK1– Sheeted, BK2 – Closed, BK3 – Flexible) for transport of bulk solids exceeding 1m³, e.g. FC of AN, bulk bins of Sulphur, rototainers of heavy mineral concentrates</td>
<td></td>
</tr>
<tr>
<td>• Non-approved FC, i.e. not accepted by Convention for Safe Containers, used to transport bulk solids</td>
<td></td>
</tr>
<tr>
<td>• Liner incompatible with goods → corrosive or oxidising goods affecting integrity of bulk container</td>
<td></td>
</tr>
<tr>
<td>• BK1 tarpaulin perforated by goods or mechanical handling → loss of solids in-transit due to airflow over surface</td>
<td></td>
</tr>
<tr>
<td>• BK3 flexible surface permeable to goods → loss of solids in-transit</td>
<td></td>
</tr>
<tr>
<td>• BK3 flexible surface perforated by coarse goods → loss of solids in-transit</td>
<td></td>
</tr>
<tr>
<td>• Hinged sides on Bulk Container or tilting lids on rototainers are inadequately locked or hinges damaged → loss of solids in-transit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Off-shore containers (OS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. Cylinder manifold packs, IMDG-rated packaged goods containers</td>
<td></td>
</tr>
<tr>
<td>• Non-approved OS i.e. not accepted by CSC or IMDG certifiers</td>
<td></td>
</tr>
<tr>
<td>• OS not subjected to Dynamic Longitudinal Impact Test means resistance to braking/transport collision unknown</td>
<td></td>
</tr>
<tr>
<td>• Fumigated units not placarded for asphyxiating danger adversely affect loaders and personnel de-stuffing OS</td>
<td></td>
</tr>
<tr>
<td>• Poor stowage and dunnage configuration in OS allows package movement → perforated goods potentially affecting OS structure</td>
<td></td>
</tr>
<tr>
<td>• Goods stacked against door or not restrained by internal cargo nets creates falling and pinch hazard for unloader</td>
<td></td>
</tr>
<tr>
<td>• Exceed maximum stacking weight → OS frame or panel failure</td>
<td></td>
</tr>
<tr>
<td>• Slings/cables/shackles on OS roof not rated → mechanical handling or lifting failures injuring loader</td>
<td></td>
</tr>
<tr>
<td>• Inadequate twist-lock configuration on OS → alternate anchoring method required</td>
<td></td>
</tr>
<tr>
<td>• Goods inside half-height open-top OS inadequately restrained → projecting goods out of container</td>
<td></td>
</tr>
<tr>
<td>Acceptance of inherent DG hazard</td>
<td>CLASS</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| | Class 1 | Explosive | • Co-transport of incompatible explosives → consider Divisions and Compatibility Groups
• Category 1, 2 & 3 loads carted in excess of vehicle aggregate or vehicle licence
• Co-transport of explosives incompatible with other dangerous goods
Refer Australian Explosives Code (AEC 3) for compliance measures; Refer Part 10 of Dangerous Goods Safety (Explosives) Regulations 2007
| Div. 2.1 Flammability | Leakage of gas into unventilated cargo transport unit forms flammable atmosphere
• Pyrophoric gas release e.g. phosphine igniting on contact with air → corrosive products
• Dissolved gases, e.g. acetylene, become unstable due to vibration shock/ excess heat |
| Div. 2.2 Compressed gas (energy)/ Asphyxiant/ Cryogenic | Potential energy stored → rapid valve release injures personnel/ affects other goods
• Leakage of gas into unventilated cargo transport unit forms asphyxiating atmosphere
• Elevated combustibility of fuels if oxidising gases leak, e.g. O₂, N₂O
• Extremely low temperature of refrigerated gases (below –90°C) → cold burns |
| Div. 2.3 Toxic Gas | Leakage of gas into unventilated cargo transport unit forms toxic atmosphere
• LC50 values are very low; IDLH contours around cylinders and cargo transport units
• Leakage of cylinders in public places, assembly areas or depots leads to acute poisoning of staff or public fatalities |
| Class 3 Flammability | Leakage of liquid into unventilated cargo transport unit forms flammable atmosphere
• Liquids transported at temperatures exceeding boiling point → pressurised containers
• Nominally empty containers often high ignition risk due to flammable mixture |
| Div. 4.1 Flammability | Heat sources may be sufficient to ignite solids → difficult extinguishing
• Dust explosion by initiation of finely divided metals and organic compounds
• Decomposing self-reactive substance → evolution of toxic gases or vapours
• Self-accelerating decomposition temperature exceeded in cargo transport unit |
| Div. 4.2 Spontaneous Combustion | Self-heating substances absorbing energy from transport conditions → bursting package
• Pyrophoric solids or liquids breaching hermetic sealed package → ignition in air
• Self-accelerating decomposition temperature exceeded in cargo transport unit |
| Div. 4.3 Flammability if wetted/ Toxic gases possible | Contact of goods with water releases flammable gas into cargo transport unit
• Moisture trapped internally in package → gas evolution that bursts package
• Evolution of toxic gases upon wetting exposes staff, e.g. a solid fumigant aluminium phosphide absorbs water, releasing toxic phosphine gas |
| Div. 5.1 Oxidizing – O₂ source | Combustion of other materials enhanced by release of O₂ during fire.
• Leakage onto metal fixtures and reactive surfaces increases decomposition/ oxidation
• Contamination of oxidising liquids leads to pressurisation of containers |
| Div. 5.2 | Organic Peroxide | Thermally unstable substances → exothermic self accelerating decomposition.
| | | Liable to explosive decomposition if contaminated metal ions/organic
| | | Decomposition hazard where diluent (stabiliser) exhausted
| | | Self-accelerating decomposition temperature exceeded in cargo transport unit
| Div. 6.1 | Toxicity | Exposure of personnel to LD50 dose (oral or dermal) or LC50 concentration (inhalation)
| | | Oral ingestion, dermal contact or inhalation of dusts, mists or vapours
| | | Failure of cylinder valve for “toxic by inhalation” goods → acute inhalation risk for staff and bystanders in-transit
| Div. 6.2 | Infectious | Category A: An infectious substance which is transported in a form that, when exposure to it occurs, is capable of causing permanent disability, life-threatening or fatal disease in otherwise healthy humans or animals.
| | | Category B: An infectious substance which does not meet the criteria for inclusion in Category A. Infectious substances in Category B must be assigned to UN 3373, except for medical or clinical wastes containing infectious substances in Category B (UN3291)
| | | Refer to WA Health Department for guidance: www.health.wa.gov.au
| Class 7 | Radioactivity | Exposure of personnel to radiation from radionuclide decay, i.e. alpha/beta/gamma evolution → irradiation of staff and adjacent public
| | | Damage to packaging creates exposure route, e.g. packaged source damaged → radionuclide environmental release → inhalation/ingestion
| | | Refer to Radiation Health Branch: www.health.wa.gov.au
| Class 8 | Corrosivity | Chemical action causes severe damage when in contact with living tissue, i.e. eyes, skin, mouth, lungs (corrosive vapour inhalation)
| | | Chemical reactivity of corrosive substance dissolves metals → loss of containment and impact upon other goods
| | | Evolution of flammable gas hydrogen when metals dissolved by acid or alkali, e.g. hydrochloric acid on steel or sodium hydroxide on aluminium
| | | Evolution of toxic gases resulting from reactions, e.g. chlorine from hypochlorite solutions, or nitrogen dioxide from nitric acid
| Class 9 | Miscellaneous | Substances which, on inhalation as fine dust, may endanger health
| | | No comprehension of chemical or physical hazards associated
| | | Substances evolving flammable vapour
| | | Flammable atmosphere formed in unventilated cargo transport unit
| | | Lithium batteries and Capacitors
| | | Fire potential if perforated; electrical hazards
| | | Substances and articles which, in the event of fire, may form dioxins
| | | Toxic by-products affecting staff
| | | Substances offered for transport at elevated temperatures
| | | Increased fire hazard to adjacent plant and goods; solidification potential
| | | Life-saving appliances
| | | Air-bags and pneumatic devices – compressed gas and explosive initiator
| | | Environmentally hazardous substances
| | | Transport & unloading around aquatic environments or wetlands

Requirements for the Packaging and Transport of Pathology Specimens and Associated Materials (2013)
(NATIONAL PATHOLOGY ACCREDITATION ADVISORY COUNCIL)
Consolidating DG loads

<table>
<thead>
<tr>
<th>Issue</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport consignment form does not include DG declaration</td>
<td>Consignor offering DG as general freight</td>
</tr>
<tr>
<td>Transport consignment form does not require full description of DG</td>
<td>Acceptance of DG based on brand name, incorrect name or lower hazard packing group</td>
</tr>
<tr>
<td>Consignment system does not recognise dangerous goods</td>
<td>Manual entry of Proper shipping name, UN No and Class</td>
</tr>
<tr>
<td>Consignment system does not recognise UN No. or DG Classes</td>
<td>No information for transport documentation, segregation or placarding</td>
</tr>
<tr>
<td>Consignment system not established for nominally empty DG packages</td>
<td>Acceptance of variety of partially-filled containers creating an incompatible placard load</td>
</tr>
<tr>
<td>LQ not detailed by consignor with Class information</td>
<td>Segregation issues</td>
</tr>
<tr>
<td>Packing Group and Aggregate Quantity not identified on consignment</td>
<td>Placard load not identified</td>
</tr>
<tr>
<td>Overall DG Manifest (load summary) not generated</td>
<td>Difficult for depot supervisor to communicate DG details through logistics chain to loaders and drivers</td>
</tr>
</tbody>
</table>

Overpacking

- Overpacking technique with black shrink-wrap obscures incompatible goods
- Overpacking a loose collection of different-sized containers
- Overpacking cylinders – C, D, E, G size – into single stillage

Labelling

- The labelling of the overpack does not match the contents of the consignor’s declaration of dangerous goods

Loading DG

<table>
<thead>
<tr>
<th>Plan</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>No documented load plan means pallets loaded according to consignee location</td>
<td>Poorly planned loads</td>
</tr>
<tr>
<td>Load plan does not indicate position of DG classes on combination</td>
<td>Poor knowledge of load by company driver or sub-contractor picking up loaded trailers</td>
</tr>
</tbody>
</table>

Achieving Effective Segregation

- Segregation practices not adopted formally in transport procedures and training
- Segregation devices and segregation packaging not available

Effective Placarding (incl. IBC Emergency Information Panels)

- DG transport documents and DG Manifest mixed in with general freight details
- Vehicles not fitted with DG labels or “Hazchem Flip Folder”
- Product specific EIPs and amendable blank Multi-Load EIPs are not available
- Tarpaulined loads obscure IBC and Portable Tank EIPs

Stacking Maximums breached

- Palletised DG stacked in excess of 3 metres high or stacked under denser loads
- Maximum stacking loads on IBCs ignored

DRAFT

INDUSTRY CONSULTATION
<table>
<thead>
<tr>
<th>Defective Packaging</th>
<th>Identifying non-UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Approved packaging marking specifications not audited by competent staff → acceptance of non-approved and non-rated outer packaging</td>
<td></td>
</tr>
<tr>
<td>• Placardable units not checked for compliance plate, e.g. IMDG, Bureau Veritas certificate, CSC, etc. → acceptance of non-approved placardable units & freight containers</td>
<td></td>
</tr>
</tbody>
</table>

	Identifying defective/ damaged/ leaking package
	Examination of package integrity not undertaken by receivals staff → transport of damaged packages occurs
	Quarantine of damaged or leaking containers not actioned → increased likelihood of leakage and dangerous reactions in-transit

	Managing receivals
	Overdrums, drum bunds and bunded areas unavailable → isolating defective/ damage/ leaking packages is difficult
	Procedure for returns to consignors are not documented → confusion over responsibilities and time delays in rectifying unacceptable consignments

	Dealing with handling incidents
	Mechanical handling incidents create damage or leakage → extra handling work and isolating products
	Overdrums or Segregation Packaging unavailable means direct waste management or product return not possible

	Responding to “in-transit”
	Inability to handle damaged large packaging or placardable units at regional depots → costly return journey or costly recovery of controlled waste
	Overdrums or Segregation Packaging unavailable means leaking packages cannot be legally transported further → depot retains the package problem longer

	Load Restraint
	Procedural issues
	Principles of the Load Restraint Guide 2004 are not formally adopted by the company to inform the relevant techniques required to obtain adequate restraint.
	Principles of the ADG Code Chapter 8.1 Stowage and Restraint on or in Cargo Transport Units are not in practice
	Principles of the ADG Code Chapter 8.2 Restraint of Cargo Transport Units on Vehicles are not in practice

	Generic hazards to address –
	Low friction (sandy, dusty or oily surfaces) e.g. composite IBC with metal tube outer frame on a metal trailer
	High Centre of Gravity, especially for Portable Tanks transported on trailer decks exceeding 1100 mm height
	Exceeding restraint rating, e.g. using a 10 mm nylon rope to secure a 2 tonne IBC
	Cylindrical objects, e.g. 108 Litre LPG cylinders or 200 Litre plastic drums
	Lightweight headboards – claiming blocking credits for a thin plywood headboard to reduce tie-down does not decrease actual forward forces encountered upon braking
	Flimsy sides and gates, i.e. minimally-rated side frames used for secondary restraint (as required by ADG Code) are not going to resist sliding IBCs
	Dunnage strength – appropriate material, thickness, shape and orientation
	Inter-layer packing (e.g. rubber matting) as a means of increasing friction between container/floor and between freight layers
	Chemically/ mechanically damaged or over-stretched straps → failure during normal use

	Pallets of packages
	Adjacent pallets of different heights means lowest pallet only restrained on trailer edge → pallet liable to pivot and shift
	Corner protectors and sleeves are not available to place on pallet top sides to resist the strap tension → operator leaving strap tension below required tie-down force
	Standard 2.5 tonne 50mm webbing strap mechanically tensioned to 600 kg perforates fibreboard boxes → loosening of straps in-transit
	Internal restraint of packages on pallet is inadequate → drums being squeezed sideways by horizontal strap tension
IBCs
- Flexible IBCs are creased significantly due to solids moving internally → gradual loosening of strap in-transit
- Steel IBCs and composite metal frames have low surface friction on steel trailer → tie-down force achieved insufficient to stop sliding on acceleration/braking

Stillages & Cylinders
- Loose vertical cylinders are horizontally restrained in square matrix meaning movement into closer packing arrangement in-transit → loosened straps
- Horizontal restraint of cylinders over and around standard unreinforced sides → panels bending and restraint loosening
- Insufficient lugs on stillages or sturdy horizontal rails for strapping → compromised restraint
- Stillages without lockdown mechanism on base or vehicle locating pins → unstable loads
- Standard stillage for G-size(50L) cylinders used for C,D,E-size → increased chance of ejection of cylinders through rail spaces

Placardable Units – Twist Locks
- Flimsy or non-rated twist lock housing on Freight Container or Portable Tank renders twist lock inoperable
- Damaged twist lock mechanism, e.g. worn/deformed locking pin, on vehicle does not supply restraining force adequate to immobilise FC or PT

Rope rails v. rated anchor points
- Rope rail not rated to resist multiple straps → rail bending excessively and uncertain tie-down force exerted to restrain pallets
- Suitably rated anchor points for direct restraint method not provided on vehicle → uncertain direct force exerted to restrain placardable unit or FC

In-transit procedures

Breakdowns
- Driver inability to manoeuvre vehicle fully off carriageway → vulnerable to rear impact or side-swipe collision
- Inexperienced driver unfamiliar with placement of portable warning triangles to highlight immobilised vehicle → increased traffic hazard

Parking
- Driver parking in residential area for prolonged period, e.g. overnight or during lunch break → increased exposure to residents and possible vehicle accidents
- Parking within 15 metres of a commercial building or public assembly area → increased exposure of public, especially to vapour venting or gas release
- Parking adjacent to another DG vehicle → increased potential for fire incident propagation or incompatible goods interaction, e.g. fuel truck parked near hot bitumen sprayer

Rest breaks
- Vehicle not visible during rest or refreshment break taken at roadhouse → inability to keep load secure

RTAA – unattended placard load?
- Driver doing shuttle runs of single-trailers from depot to RTAA leaving placard loads unsupervised → no load security nor ability to respond to DG incident
- Driver leaves tarpaulined load or locked freight container with Mixed Class diamond at RTAA → problematic evacuation of trailers with no indication of contents

Journey Management Plan (JMP)
- JMP not established → routes chosen by individual drivers and sub-contractors not in accord with permitted routes and risk minimisation principles
- JMP not in place for new recruit → poorly executed delivery and low awareness of permitted routes and unloading procedures
- JMP not executed by inducted driver → fatigue management breaches and unaccounted delays
- JMP not properly conveyed from senior driver trainer/mentor to new inductee renders it ineffective
- JMP not properly established for remote travel → elevated hazard for individual driver involved in accident, breakdown or weather-related incident
Activating Transport Emergency Response Plan (T.E.R.P.)

Driver unaware of T.E.R.P. → Actions undertaken inconsistent with necessary response for specific DG load involved

Driver does not follow initial response as per EPG → Elevates the particular hazard, e.g. attempting extinguishment of fuel pool fire by splashing water onto fire

Communication failure – driver unable to activate ERP → Delays in required ER reaching incident site

T.E.R.P. responsibilities not understood by responsible officer, e.g. containment strategies, mobilisation of resources → ER inadequate and inordinately lengthy

Approved Emergency Responder not in place → DG recovery action hampered, e.g. road closures lengthened unnecessarily, contaminated soil area expanded, & legal responsibilities not met

Unloading DG at Consignee premises

Multi-modal Handling – forklift – telehandler – container crane
- Gross mass of container exceeds SWL rating of mechanical handling machine

Premises configuration
- Unloading area not flat and suitable for parking → load shifting after restraints loosened and problematic unloading of containers

Transfer of Bulk Solids
- Perforation of FIBCs or BK3 (flexible bulk container)

Transfer of Liquids
- Perforation of IBCs/ outlet tap knocked open/ filling port loosened

Transfer of Gases – Portable Tank movement
- Release of vapour if relief valve/ burst disc outlet fractured
- Container over-pressure if insulated jacket of cryogenic/ refrigerated liquefied gases compromised

Transfer of Gases – Cylinder & MEGCs
- Manifolded connections damaged or valves sheared in placement → significant compressed gas release

DMP welcomes comments on this template and feedback on inclusions or omissions. Send your comments to: Stephen.lane@dmp.wa.gov.au by 30th April 2016.